
Python Programming

Speaker: Yun-Wei Lin
Materials: Prof. Chang-Chieh Cheng

National Yang Ming Chiao Tung University

Introduction to Python
• Why Python?

• The learning of Python is more easy than other programming language
for a beginner.

• You can quickly design a useful application.
• You can have increased motivation when you feel some sense of

accomplishment
• Cross-platform and portable code
• Many free resources can be found on the internet
• Development of AI applications

• Scikit-learn
• TensorFlow
• Keras
• PyTorch

2

The History of Python
• The concept of Python was started in the late 1980s
• The implementation of Python began in Dec.1989 by Guido van Rossum

at Centrum Wiskunde & Informatica (CWI) in the Netherlands.
• 16 Oct. 2000, Python 2.0 released.
• 3 Dec. 2008, Python 3.0 released.
• 28 Mar. 2018, Python 3.6.5 released.

3

Guido van Rossum

Programming Environment
• Typical installation

• Installing python 3.x
• https://www.python.org/

• Upgrading pip
• python -m pip install --upgrade pip

• Installing libraries
• pip install numpy scipy matplotlib ipython jupyter pandas

• About Jupyter Notebook
• A web-based python IDE
• https://jupyter.org/

4

In Windows, you need to append the paths of Python and Jupyter to
PATH, which is a system environment variable for default paths.

Programming Flow

5

Raising a question

Thinking an algorithm

Writing source code
with a texteditor

Generating machine code
by Python compiler

Running machine code
with OS and CPU

Verifying results

Simple Arithmetic
• What are the results of the following program?

6

print(1 + 2 + 3)
print(1 + 2 * 3 / 4)

Variables and Objects
• A variable or object can store a value for arithmetic.

• A variable or object can provide a value in an arithmetical
expression.

• The value of a variable or object can be change.

• Run the following code:

7

x = 10
y = 2
print(x + y)
z = x / y
print(z)
x = x * z
y = y - z
print(x + y)

Variables and Objects
• Assignment operator "="

• a = b means copying the value of b to a.
• a = b + c means copying the value of (b + c)to a.
• LHS, left-hand side

• Creating variables
• RHS, right-hand side

• An expression can calculate values
• Rule:

1. RHS calculates n values
2. LHS create n variables
3. Assign the n values to the n variables, respectively.

8

Print Multiple Objects
• print is a function, which can display a message or data of a variable on

screen.
• argument: an input value of a function call.
• Any two arguments are delimited by a comma.

• print can output the values of arguments in the order from left to right.
• Any two output results are delimited by a space

9

x = 10
y = 2
z = x / y
print(x, y, z)

Print Objects and Texts
• Run the following code:

• How many arguments in each print?
• Let's try it:

• Change the values of x and y by any number.
• The symbol of multiplication is *.
• Please modify this example so that the result is

X times by Y is 20
10 times 2 is 20

10

x = 10
y = 2
z = x / y
print("X divided by Y is ", z)
print(x, "divided by", y, "is", z)

Strings
• In programming, we call a text is a string.
• Character

• A unit of a text.
• A letter, a numerical digit, or a symbol.

• String
• A series of characters.
• For example, "Hello" consists of five characters that are 'H', 'e', 'l', 'l',

and 'o'.

• String representation
• Single quotes

• 'ABC'
• '123456890'

• Double quotes
• "ABC"
• "1234567890"

• No different between single quotes and double quotes 11

Strings
• Let's try it

• Run the following program and see what results will be output.
• Can you explain the reason of each output?

12

x = "XYZ"
y = 'ABC'
print(x, y)

x = "123"
y = '456'
z = x + y
print(z)

x = 123
y = 456
z = x + y
print(z)

x = "123"
y = 456
z = x + y
print(z)

Special Character
• Single quote

• Double quote

• tab

• newline

13

x = "\'"
print(x)

x = '\"'
print(x)

x = 'ABC\tXYZ'
print(x)

x = 'ABC\nXYZ'
print(x)

Data Input
• input(prompt_string)

• Read a string from standard input.
• You can type data in IPython console window.
• The trailing newline is stripped. (not including the newline character).

14

x = input("Input the first string: ")
print(x)
y = input("Input the second string: ")
print(x, y)

Comment in Python
• Comment

• An explanation or annotation in the source code.
• All comments will be ignored by Python interpreter.

• Single line comment #

• Multiple-line comment """ … """

15

test
print(1 + 2 + 3) # the result is 6
print(1 + 2 * 3 / 4) # 2.5

"""
This is my first Python program.
I love Python
very much!
"""
print(1 + 2 + 3) # the result is 6
print(1 + 2 * 3 / 4) # 2.5

Operators
Operator Description

:= Assignment expression

lambda Lambda expression

if – else Conditional expression

or Boolean OR

and Boolean AND

not x Boolean NOT

in, not in, is, is not, <, <=, >, >=, !=, == Comparisons, including membership tests and
identity tests

| Bitwise OR

^ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, ‐ Addition and subtraction

*, @, /, //, % Multiplication, matrix multiplication (numpy),
division, floor division, remainder 5

+x, ‐x, ~x Positive, negative, bitwise NOT

** Exponentiation 6

await x Await expression

x[index], x[index:index], x(arguments...), x.attri
bute Subscription, slicing, call, attribute reference

(expressions...),
[expressions...], {key: value...}, {expressions...}

Binding or parenthesized expression, list
display, dictionary display, set display 16

lowest precedence

highest precedence

Arithmetic Operators
• + addition x + y

• - subtraction x - y

• * Multiplication x * y

• / Division x / y

• % modulus
• ** exponent
• // Floor division

(integer division)

17

x = 11
y = 7
z = x % y
print(z) # 4
z = y ** 2
print(z) # 49
z = 2 ** 0.5
print(z) # 1.4142135623730951
z = x / y
print(z) # 1.5714285714285714
z = x // y
print(z) # 1

Arithmetic Operators
• // Floor division

• dividing and rounding down to the nearest integer.
• z = x // y

• z will be the nearest integer of x / y and smaller than x / y

18

x = 5
y = 2
z = x // y
print(z) # 2

x = -5
y = 2
z = x // y
print(z) # -3

x = 5
y = 2

a = x // y
b = -x // y
print(a, b) # 2, -3

a = x // y
b = -a
print(a, b) # ?, ?

Arithmetic Operators
• % Modulus

• x % y
• x - x // y * y

19

x = 11
y = 3
z = x % y # 11 – (3 * 3)
print(z) # 2

x = -11
y = 3
z = x % y # -11 – (-4 * 3)
print(z) # 1

x = 11
y = -3
z = x % y # 11 – (-4 * -3)
print(z) # -1

x = 11.4
y = 3
z = x // y # 11.4 – (3 * 3)
print(z) # 2.4

x = -11.4
y = 3
z = x // y # -11.4 – (-4 * 3)
print(z) # 0.6

x = 11.4
y = -3
z = x % y # 11.4 – (-4 * -3)
print(z) # -0.6

Arithmetic Assignment Operators
• += x += y x = (x + y)

• -= x -= y x = (x - y)

• *= x *= y x = (x * y)

• /= x /= y x = (x / y)

• %= x %= y x = (x % y)

• **= x **= y x = (x ** y)

• //= x //= y x = (x // y)

20

x = 1
x += 1
print(x) # 2
x *= x
print(x) # 4
x %= 5
print(x) # 4
x //= x - 1
print(x) # 1

x = 1
x += x += 1 # Invalid syntax
x *= (x /= 1) # Invalid syntax

Augmented Assignments
• Augmented assignment operators

• +=, -=, *=, ...
• a += b means copying the value of b to a.
• a = b + c means copying the value of (b + c)to a.
• LHS, left-hand side

• An expression can create variables
• LHS contains an undefined name will cause a NameError

• RHS, right-hand side
• An expression can calculate values

• Rule:
1. LHS create n variables
2. RHS calculates n values
3. Calculating the values of LHS and RHS with the augmented operator.
4. Assign the n values to the n variables, respectively.

21

String Operators
• + String concatenation
• += String appending

22

x = 'james' + 'cheng' + 'cs' # Concatenate three strings
print(x) # jameschengcs

y = x + '@''nctu.edu.tw'
+ can be omiited for concatenating literal strings

print(y) # jameschengcs@nctu.edu.tw

z = "email: "
z += y # Appending y to z
print(z) # email: jameschengcs@nctu.edu.tw

Number to String
• str(number)

• Let’s try it:
• Modify the fifth line, z = str(x) + str(y), such that the result of the 6th line is

123 + 456 = 579

23

x = 123
y = 456
z = x + y
print(z) # 579
z = str(x) + str(y)
print(z) # 123456

Lists
• Creating a list which can contain many objects

• listname = [object1, object2, …, objectN]

• Accessing an item of a list
• listname[index]

• index is an integer.
• The index of the first object in the list is zero.

• zero-based indexing

24

L = [10, 20, 30, 4, 5, 6]
print(L[0]) # 10
print(L[3]) # 4
L[2] += L[4] + L[5]
print(L[2]) # 41
print(L) #[10, 20, 41, 4, 5, 6]

Lists
• An index can be negative.

• -N ≤ index < N

25

L = [10, 20, 30, 4, 5, 6] # N = 6
print(L[-1]) # L[N - 1] L[5] 6
print(L[-2]) # L[N - 2] L[4] 5
print(L[-6]) # L[N – 6] L[0]

L = [10, 20, 30, 4, 5, 6] # N = 6
print(L[6]) # Out of range!
print(L[-7]) # L[N - 7] Out of range!

Lists
• The types of objects in a list can be different.

26

L = [10, 20, 30, 'ABC', '123', '456']
print(L[0]) # 10
print(L[3]) # ABC

L[0] += L[1] + L[2]
print(L[0]) # 60

L[3] += L[4] + L[5]
print(L[3]) # ABC123456

L[1] = L[4] + L[5]
print(L[1]) # 123456

L[1] is changed to a string

Lists
• Be careful with the type error.

• We will learn how to check the type of an object later.

• Let’s try it:
• L = [10, 20, 30, 'ABC', '123', '456']
• Design a program to swap the first and last objects of L, such that the result of print(L) is

['456', 20, 30, 'ABC', '123', 10]

27

L = [10, 20, 30, 'ABC', '123', '456']

L[2] += L[4] + L[5] # Type error!
L[2] is an integer
but L[4] + L[5] is a string

Lists
• The length of a list

• The number of items in a list
• len(list_object)

28

L = [10, 20, 30, 'ABC', '123', '456']

print(len(L)) # 6

Lists
• Range accessing

• list[S:T:D]
• From S to T, T is not included, with an interval D.
• The defaults values of S, T, and D are 0, N, and 1 respectively.
• S < T and the S and T must have the same sign; otherwise, the result is an empty list.

29

L = [10, 20, 30, 'ABC', '123', '456']
print(L[1:5:1]) # [20, 30, 'ABC', '123']
print(L[1:5:2]) # [20, 'ABC']
print(L[2:4]) # Item 2 ~ Item 3
print(L[:3]) # Item 0 ~ Item 2
print(L[3:]) # Item 3 ~ Item N - 1
print(L[0:len(L)])
print(L[-6:-1])
print(L[:])
print(L[::3])

Lists
• Range accessing

30

L = [10, 20, 30, 'ABC', '123', '456']
print(L[1:1]) # []
print(L[2:1]) # []
print(L[-1:-2]) # []
print(L[-2:3]) # []

Lists
• List operators

• + list concatenation
• += list appending

31

L1 = [10, 20, 30]
L2 = [40, 50, 60]
L3 = L1 + L2
print(L3) # [10, 20, 30, 40, 50, 60]
L1 += L1
print(L1) # [10, 20, 30, 10, 20 ,30]

Lists
• String can be regarded as a read-only list of characters.

• That means you cannot modify any character of a string.

• Range access in string:

32

s = 'ABCDEF'
print(s[0]) # A
print(s[3]) # D

s = 'ABCDEF'
s[2] = 'X' # Error! each character is read-only!

s = 'ABCDEF'
print(s[1:3]) # BC
print(s[:3]) # ABC
print(s[2:]) # CDEF

Lists
• Converting a string to a character list.

• list(string_object)

• Converting a character list to a string.
• str().join(list_object)

or
''.join(list_object)

33

s = 'ABCDEF'
L = list(s)
print(L[0]) # A
print(L[3]) # D
L[2] = 'X'
print(L) # ['A', 'B', 'X', 'D', 'E', 'F']
print(s) # ABCDEF
s = ''.join(L)
print(s) # ABXDEF

Assignment and List
• For integers and floats, the assignment is similar to data replication.

34

x = 1
y = x
y += 1
print(x) # 1
print(y) # 2

x = 0.5
y = x
y += 1
print(x) # 0.5
print(y) # 1.5

Assignment and List
• For other object, the assignment is similar to reference change (change

the linking)

35

L1 = [1, 2, 3]
L2 = L1
L2[0] += 10
print(L1) # [11, 2, 3]
print(L2) # [11, 2, 3]

Assignment and List
• For string, the assignment is similar to reference change (change the

linking).
• However, string data is read-only, which means you cannot modify every character of

a string

36

s1 = "hello"
s2 = s1
s2 = "abc"
print(s1) # hello
print(s2) # abc

Textbook
• Hemant Kumar Mehta, Mastering Python Scientific Computing, Packt

Publishing, Sep. 2015.

37

